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N. Truhar, and I. Nakić; Damping Optimization Of Mechanical Systems;
work in progress
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Consider a damped linear vibrational system

Mẍ+Dẋ+Kx = 0,

x(0) = x0, and ẋ(0) = ẋ0

where M,D,K ∈ Rn×n ( mass, damping, stiffness), M and K > 0
(positive definite).

D = Cu + C , Cu > 0 internal damping, C ≥ 0 external (viscous)
damping.

A very important question arises in consideration of such systems:
For the given mass (M ) and stiffness (K) determine the best (optimal)
damping which will insure an optimal evanescence.
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Example I

Consider n-mass oscillator or oscillator ladder

M = diag(m1,m2, . . . ,mn), D ≡ Cu+C = Cu+v1e1e
T
1 +v3e3e

T
3 .

K =


k1 + k2 −k2
−k2 k2 + k3 −k3

. . .
. . .

. . .

−kn−1 kn−1 + kn −kn
−kn kn + kn+1

 ,

mi > 0 - masses, vi - viscosity applied on the i-th mass,
ki > 0 - stiffnesses
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For this optimization problem one needs optimization criteria
• Spectral abscissa criterion

max
k

Re (λk) → min

where λk are the complex eigenvalues of
(
λ2M + λD +K

)
x = 0

• we will use the following criterion:

trX → min

where X is the solution

AX +XAT = −Z.

A is 2n× 2n matrix obtained from M , D, K ; Z has structure.
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Efficient overall algorithm for dampers’ optimization is still in want !
For the moment we assume: given dampers’ positions !
We optimize dampers viscosities v1, . . . , vr

A(v)X(v) +X(v)A(v)T = −Z v = (v1, . . . , vr)

Z depends on dominant frequencies.

Standard approach:
• Pick (define) dampers position

• Solve Lyapunov equation (Bartels-Stewart or Hammerling (Schur)
algorithm)

• using obtained orthogonal basis to calculate Gradient and Hessian

• Newton minimization process

K. Brabender 1996, flops = niter30
(
1 + 3r+r2

2

)
m3 +O(m3),

m = 2n.

Ninoslav Truhar An Efficient Approximation of Optimal Damping in Mechanical Systems 6/26



Efficient overall algorithm for dampers’ optimization is still in want !
For the moment we assume: given dampers’ positions !
We optimize dampers viscosities v1, . . . , vr

A(v)X(v) +X(v)A(v)T = −Z v = (v1, . . . , vr)

Z depends on dominant frequencies.

Standard approach:
• Pick (define) dampers position

• Solve Lyapunov equation (Bartels-Stewart or Hammerling (Schur)
algorithm)

• using obtained orthogonal basis to calculate Gradient and Hessian

• Newton minimization process

K. Brabender 1996, flops = niter30
(
1 + 3r+r2

2

)
m3 +O(m3),

m = 2n.

Ninoslav Truhar An Efficient Approximation of Optimal Damping in Mechanical Systems 6/26



Efficient overall algorithm for dampers’ optimization is still in want !
For the moment we assume: given dampers’ positions !
We optimize dampers viscosities v1, . . . , vr

A(v)X(v) +X(v)A(v)T = −Z v = (v1, . . . , vr)

Z depends on dominant frequencies.

Standard approach:
• Pick (define) dampers position

• Solve Lyapunov equation (Bartels-Stewart or Hammerling (Schur)
algorithm)

• using obtained orthogonal basis to calculate Gradient and Hessian

• Newton minimization process

K. Brabender 1996, flops = niter30
(
1 + 3r+r2

2

)
m3 +O(m3),

m = 2n.

Ninoslav Truhar An Efficient Approximation of Optimal Damping in Mechanical Systems 6/26



Efficient overall algorithm for dampers’ optimization is still in want !
For the moment we assume: given dampers’ positions !
We optimize dampers viscosities v1, . . . , vr

A(v)X(v) +X(v)A(v)T = −Z v = (v1, . . . , vr)

Z depends on dominant frequencies.

Standard approach:
• Pick (define) dampers position

• Solve Lyapunov equation (Bartels-Stewart or Hammerling (Schur)
algorithm)

• using obtained orthogonal basis to calculate Gradient and Hessian

• Newton minimization process

K. Brabender 1996, flops = niter30
(
1 + 3r+r2

2

)
m3 +O(m3),

m = 2n.

Ninoslav Truhar An Efficient Approximation of Optimal Damping in Mechanical Systems 6/26



Efficient overall algorithm for dampers’ optimization is still in want !
For the moment we assume: given dampers’ positions !
We optimize dampers viscosities v1, . . . , vr

A(v)X(v) +X(v)A(v)T = −Z v = (v1, . . . , vr)

Z depends on dominant frequencies.

Standard approach:
• Pick (define) dampers position

• Solve Lyapunov equation (Bartels-Stewart or Hammerling (Schur)
algorithm)

• using obtained orthogonal basis to calculate Gradient and Hessian

• Newton minimization process

K. Brabender 1996, flops = niter30
(
1 + 3r+r2

2

)
m3 +O(m3),

m = 2n.

Ninoslav Truhar An Efficient Approximation of Optimal Damping in Mechanical Systems 6/26



Efficient overall algorithm for dampers’ optimization is still in want !
For the moment we assume: given dampers’ positions !
We optimize dampers viscosities v1, . . . , vr

A(v)X(v) +X(v)A(v)T = −Z v = (v1, . . . , vr)

Z depends on dominant frequencies.

Standard approach:
• Pick (define) dampers position

• Solve Lyapunov equation (Bartels-Stewart or Hammerling (Schur)
algorithm)

• using obtained orthogonal basis to calculate Gradient and Hessian

• Newton minimization process

K. Brabender 1996, flops = niter30
(
1 + 3r+r2

2

)
m3 +O(m3),

m = 2n.

Ninoslav Truhar An Efficient Approximation of Optimal Damping in Mechanical Systems 6/26



Efficient overall algorithm for dampers’ optimization is still in want !
For the moment we assume: given dampers’ positions !
We optimize dampers viscosities v1, . . . , vr

A(v)X(v) +X(v)A(v)T = −Z v = (v1, . . . , vr)

Z depends on dominant frequencies.

Standard approach:
• Pick (define) dampers position

• Solve Lyapunov equation (Bartels-Stewart or Hammerling (Schur)
algorithm)

• using obtained orthogonal basis to calculate Gradient and Hessian

• Newton minimization process

K. Brabender 1996, flops = niter30
(
1 + 3r+r2

2

)
m3 +O(m3),

m = 2n.

Ninoslav Truhar An Efficient Approximation of Optimal Damping in Mechanical Systems 6/26



Efficient overall algorithm for dampers’ optimization is still in want !
For the moment we assume: given dampers’ positions !
We optimize dampers viscosities v1, . . . , vr

A(v)X(v) +X(v)A(v)T = −Z v = (v1, . . . , vr)

Z depends on dominant frequencies.

Standard approach:
• Pick (define) dampers position

• Solve Lyapunov equation (Bartels-Stewart or Hammerling (Schur)
algorithm)

• using obtained orthogonal basis to calculate Gradient and Hessian

• Newton minimization process

K. Brabender 1996, flops = niter30
(
1 + 3r+r2

2

)
m3 +O(m3),

m = 2n.

Ninoslav Truhar An Efficient Approximation of Optimal Damping in Mechanical Systems 6/26



Main drawback of direct methods

All direct methods for trace calculate whole solution - to expensive.
For Example:

n = 600, r = 2, 2 similar dampers, fixed positions

with a proper starting point v0; viscosity optimization

Hammarling algorithm ∼ 3 · 1012 flops = 3 teraflops.

∼ 20 min (2 GHz, 2 GB)

Positions’ optimization:
discrete optimization over 180000 positions 6.8 years
It does not look efficient at all!

Ninoslav Truhar An Efficient Approximation of Optimal Damping in Mechanical Systems 7/26



Main drawback of direct methods

All direct methods for trace calculate whole solution - to expensive.
For Example:

n = 600, r = 2, 2 similar dampers, fixed positions

with a proper starting point v0; viscosity optimization

Hammarling algorithm ∼ 3 · 1012 flops = 3 teraflops.

∼ 20 min (2 GHz, 2 GB)

Positions’ optimization:
discrete optimization over 180000 positions 6.8 years
It does not look efficient at all!

Ninoslav Truhar An Efficient Approximation of Optimal Damping in Mechanical Systems 7/26



Main drawback of direct methods

All direct methods for trace calculate whole solution - to expensive.
For Example:

n = 600, r = 2, 2 similar dampers, fixed positions

with a proper starting point v0; viscosity optimization

Hammarling algorithm ∼ 3 · 1012 flops = 3 teraflops.

∼ 20 min (2 GHz, 2 GB)

Positions’ optimization:
discrete optimization over 180000 positions 6.8 years
It does not look efficient at all!

Ninoslav Truhar An Efficient Approximation of Optimal Damping in Mechanical Systems 7/26



Main drawback of direct methods

All direct methods for trace calculate whole solution - to expensive.
For Example:

n = 600, r = 2, 2 similar dampers, fixed positions

with a proper starting point v0; viscosity optimization

Hammarling algorithm ∼ 3 · 1012 flops = 3 teraflops.

∼ 20 min (2 GHz, 2 GB)

Positions’ optimization:
discrete optimization over 180000 positions 6.8 years
It does not look efficient at all!

Ninoslav Truhar An Efficient Approximation of Optimal Damping in Mechanical Systems 7/26



Main drawback of direct methods

All direct methods for trace calculate whole solution - to expensive.
For Example:

n = 600, r = 2, 2 similar dampers, fixed positions

with a proper starting point v0; viscosity optimization

Hammarling algorithm ∼ 3 · 1012 flops = 3 teraflops.

∼ 20 min (2 GHz, 2 GB)

Positions’ optimization:
discrete optimization over 180000 positions 6.8 years
It does not look efficient at all!

Ninoslav Truhar An Efficient Approximation of Optimal Damping in Mechanical Systems 7/26



Main drawback of direct methods

All direct methods for trace calculate whole solution - to expensive.
For Example:

n = 600, r = 2, 2 similar dampers, fixed positions

with a proper starting point v0; viscosity optimization

Hammarling algorithm ∼ 3 · 1012 flops = 3 teraflops.

∼ 20 min (2 GHz, 2 GB)

Positions’ optimization:
discrete optimization over 180000 positions 6.8 years
It does not look efficient at all!

Ninoslav Truhar An Efficient Approximation of Optimal Damping in Mechanical Systems 7/26



Main drawback of direct methods

All direct methods for trace calculate whole solution - to expensive.
For Example:

n = 600, r = 2, 2 similar dampers, fixed positions

with a proper starting point v0; viscosity optimization

Hammarling algorithm ∼ 3 · 1012 flops = 3 teraflops.

∼ 20 min (2 GHz, 2 GB)

Positions’ optimization:
discrete optimization over 180000 positions 6.8 years
It does not look efficient at all!

Ninoslav Truhar An Efficient Approximation of Optimal Damping in Mechanical Systems 7/26



Experience

We have notices:
• “Bad positions” can not be significantly improved by viscosities

• For detecting “bad positions” (better a good), we do not need 16 or
even 8 exact digits.

♦ We will try to find a small number of “good positions”.

Idea:
♦ Find the optimal damping (optimal viscosity) for each position, for 1

damper; with just 1 dominant frequency.
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Idea.

Let ΦTKΦ = Ω2, ΦTMΦ = I , for i = 1, . . . , n, compute minimal
traces tropt = tr(Xk(i)), where

A(i)Xk(i) +Xk(i)A(i)
T = Zk , Zk = Ẑk ⊕ Ẑk , (Ẑk)jk = δj,k ,

k = 1, . . . , s.

A(i) = A0 − vi
[
0 0
0 cic

T
i

]
, A0 =

[
0 Ω
−Ω −αΩ

]
, ci = ΦT ei ,

i = 1, . . . , n .
For each k = 1, . . . , s we get function gk : {1, . . . , n} → R,

gk(i) = tr(Xk(i)) ,

The possible best positions are local minimums of gk(i) for i = 1, . . . , n.
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Idea.

Consider system on figure, n = 601
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Left figure is for the 5-th frequency (s = 5).
Right figure is for the 8-th frequency (s = 8).
The candidate: 339(0.3688), 415(0.4285), 487(0.4324), 561(0.3698)
(for s = 5)
The candidate: 326(0.3618), 375(0.4180), 425(0.4326), 477(0.4333),
526(0.4498), 575(0.3411) (for s = 8)
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Significant improvement:
For s = 1, . . . , 40 instead 180000 (n = 601) possibilities, we get 9000
(n0 = 176)!
Still, it is very demanding job! 9000 2D optimizations.
We need: a efficient solver (faster then n2) and more efficient optimization
Case without internal damping: Cu = 0, there exist formula: Veselić
(1990):

Tr(ZX) = const+
a

v
+ bv, a, b > 0 .

total costO(n2), optimal v for free, vopt =
√
a/b.

Unfortunately, for Cu 6= 0, the above formula is very unstable.
Idea: derive a similar formula (even complicated) for Cu 6= 0!

We failed! It still open?

But, we have an asymptotic analysis, which allows a rational
approximation!
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(1990):

Tr(ZX) = const+
a

v
+ bv, a, b > 0 .

total costO(n2), optimal v for free, vopt =
√
a/b.

Unfortunately, for Cu 6= 0, the above formula is very unstable.
Idea: derive a similar formula (even complicated) for Cu 6= 0!

We failed! It still open?

But, we have an asymptotic analysis, which allows a rational
approximation!

Ninoslav Truhar An Efficient Approximation of Optimal Damping in Mechanical Systems 11/26



Significant improvement:
For s = 1, . . . , 40 instead 180000 (n = 601) possibilities, we get 9000
(n0 = 176)!
Still, it is very demanding job! 9000 2D optimizations.
We need: a efficient solver (faster then n2) and more efficient optimization
Case without internal damping: Cu = 0, there exist formula: Veselić
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Idea: avoid 9000 2D optimizations!
Idea: use 9000 obtained 1D optimal viscosities!

How to perform 1D optimization?
Asymptotics:
Thus, for tr(X(v)) we have

tr(X(v)) ≈ av2 + bv + c · tr(X(0))

v + c
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Optimization process

Now we can apply the optimization process (similar as parabolic
minimization):
define rational functions

g(v) =
av2 + bv + c · tr(X(0))

v + c
,

a, b and c are determined by a simple interpolation through v1, v2, v3.
The zero of g′(v4) = 0 is the first approximation for the optimal v.
Replace {v1, v2, v3} by the new minimum v4 and repeat the process until
the selected tolerance level is attained.
We noticed: that 5-10 steps are enough for tolerance ≈ 10−4.
Still we need to solve 5− 10 Lyapunov equations, with a low tolerance
(≈ 10−4).
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Error bound

For efficient optimization, we need an apriority error bound.
Unfortunately, up to date we did not find usefull apriority error bound (for
any existing “fast solvers”)
Thus, we derive a new error bound.
Let

ATX +XA = −Z,

be the Lyapunov equation, with

A =

[
0 A12

−A12 −∆

]
, Z =

[
Z1 0
0 Z2

]
,

with A12 and ∆ > 0.
Let

X =

[
X11 X12

XT
12 X22

]
and Y =

[
Y11 X12

Y T
12 Y22

]
,

be solution and its approximation (obtained by some appropriate solver),
resp.
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Error bound

Let E
.
= ATY + Y A+ Z , be residual, written

E =

[
0 E2

ET
2 E3

]
.

If A12 is diagonal, then the following (new) bound holds

|tr(X − Y )| / |tr(∆−1E3)|+ |tr(E2A
−1
12 )|

.
= Bnd .
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New algorithm for damping optimization

For illustration let r = 2, i.e. number of positions is 2
Input:
Ω – undamped frequencies
(square root of eigenvalues of the pair M and K);
s – the number of dominant undamped frequencies (2s = rankZ);
Din – internal damping, default Din = αΩ, α ∈ {0.01, 0.05} ;
maxiter, tol;
Output: quadruple (s1, s2, v1, v2) as an approximate minimizer of the
trace function.
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New algorithm for damping optimization

Phase I: From T0 local minimums
form a set of quadruples (possible minimums) (s1(t), s2(t), v1(t), v2(t)),
t = 1, . . . T0 · (T0 − 1)/2, usually (for r = 2) T0 ≤ 0.3n.
Phase II:
for each quadruple (s1(t), s2(t), v1(t), v2(t)) calculate corresponding
trace of the solution of Lyapunov equation

Ap(s, v)Y (t) + Y (t)Ap(s, v)
T = −Zp

where

Ap(s, v) = A0 − v1(t) · cs1(t)c
T
s1(t)
− v2(t) · cs2(t)c

T
s2(t)

,

Phase II: Output

(smin, vmin)
.
= (s1, s2, v1, v2)min = argmin

1≤t≤T̂0

tr(Y (t)) .
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Numerical examples

Case I Random
M0 = randn(n), K0 = randn(n); M =M0M

∗
0 , K =

√
K0K∗0 ,

Z = I5 ⊕ 0n−5 ⊕ I5 ⊕ 0n−5; Φ∗MΦ = I , Φ∗MΦ = Ω2,
“dampers’ positions” (s1, s2)⇒ Φ(s1, s2, :)

For n = 50
Our approach: 33 potential positions, (n× 1D opt. +528 Lyap. sol. )⇒
opt. pos. (16, 31); opt. visc. (18.5, 25.4).
after 13 sec. opt. trace 651.82

vs. standard approach 50 potential positions, (1225× 2D opt. each
≈ 40× Lyap. sol.); opt. pos. (16, 31) and visc. (22.63, 29.59)
after 600 sec. opt trace 645.957
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Numerical examples

m1 m2 mn−1 mn

k1

v1

k2

v2

kn kn+1

Figure: n mass oscillator

Case II n = 1000
mi = 100(i− 1) + 2, ki = 1, i = 1, . . . , n,
Z = I100 ⊕ 0900, ⊕I100 ⊕ 0900, M = diag(mi)/(

∑
mi).

Our approach: 45 potential positions (with 292 different viscosities) , (n×
1D opt. +42486 Lyap. sol. )⇒ opt. pos. (292, 830); opt. visc.
(0.0469, 0.0744).
Using projection with p = 200, we need approx. 2.5 hours
vs. standard approach 1000 potential positions, (499500× 2D opt. each
≈ 40× Lyap. sol.); No Way !!! approx. 5550 hours
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Singular mass matrix

We still consider a system:

Mẍ+ Cẋ+Kx = 0 , x(0) = x0, ẋ(0) = ẋ0 ,

where M ≥ 0, C ≥ 0 and K > 0.
Simult. diagonal.

ΦTMΦ =

[
0n0

Im

]
, ΦTKΦ =

[
Ω2

0

Ω2
+

]
,

Let n0
.
= dim(N (M)) ≥ 1.
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Singular mass matrix

Now, the damping

D = ΦT (Cin + v · Cex)Φ =

[
D11 D12

DT
12 D22

]
,

D11 ∈ Rn0,n0 , D22 6= 0 .

All this implies

D11ẋ1 +D12ẋ2 +Ω2
0x0 = 0,

ẍ2 +DT
12ẋ1 +D22ẋ2 +Ω2

+x+ = 0 ,

where x = [x0, x+], x0 and x+ are of dimension n0 and m, respectively.
By substitution

z1 = Ω0x0 , z2 = Ω+x+ , z3 = ẋ2 ,
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Singular mass matrix

The ODE system

ż1 = −Ω0D
−1
11 D12z3 −Ω0D

−1
11 Ω0z1

ż2 = Ω+z3

ż3 = DT
12D

−1
11 Ω0z1 −Ω+z2 +

(
DT

12D
−1
22 D12 −D22

)
z3 ,

which yields to the following linearization:

ż = Az,

A =

−Ω0D
−1
11 Ω0 0n0,m −Ω+D

−1
11 D12

0m,n0 0m,m Ω+

DT
12D

−1
11 Ω+ −Ω+ DT

12D
−1
11 D12 −D22

 .
If D12 = 0, then the linearization

A+ =

[
0 Ω+

−Ω+ −D22

]
.

The standard linearization used I. Nakić 2002, K. Brabender 1998, Müeller
and Gürgöze 1991, Benner, Tomljanović Truhar 2010, 2011.
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ż = Az,

A =

−Ω0D
−1
11 Ω0 0n0,m −Ω+D

−1
11 D12

0m,n0 0m,m Ω+

DT
12D

−1
11 Ω+ −Ω+ DT

12D
−1
11 D12 −D22

 .
If D12 = 0, then the linearization

A+ =

[
0 Ω+

−Ω+ −D22

]
.

The standard linearization used I. Nakić 2002, K. Brabender 1998, Müeller
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Ninoslav Truhar An Efficient Approximation of Optimal Damping in Mechanical Systems 23/26



Singular mass matrix

The ODE system
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ż3 = DT
12D

−1
11 Ω0z1 −Ω+z2 +

(
DT

12D
−1
22 D12 −D22

)
z3 ,

which yields to the following linearization:
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Singular mass matrix – damping optimization

Here usually, Cin = 0 (α = 0 or α� 1). We optimize only v in
Dex

.
= vΦTCexΦ

tr(ZX) = min ,

For the n0
.
= dim(N (M)) = 1 and α = 0 (no internal damping) we

have

f(v) = tr(X) = 2 ·
n−1∑
i

(X11)ii +

n−1∑
i

ωn

d2

ηi
ωi

(d1)i + v
d22
2ω2

n

(2n− 1) .

Thus, we approximate the trace function with

f(v) =
a0
v

+ b0v + c0,

where the constants a0, b0 and c0 are obtained from tr(X)(vi),
i = 1, 2, 3.
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Summary

We have shown:
• the novel approach for damping optimization for mechanical
systems
It is based on the new:
position search, base on one frequency damping optimization
viscosity optimization using new approximation for the trace function
error bound for the approximate solution of Lyapunov equation
• singular mass case
we presented new:
linearization
formula for the trace of solution of Lyapunov equation 1D case
approximation function for the trace for 2D or 3D case
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